Multidimensional Kolmogorov-Petrovsky Test for the Boundary Regularity and Irregularity of Solutions to the Heat Equation
نویسنده
چکیده
where f∗, u∗ (or f ∗, u∗) are lower (or upper) limit functions of f and u, respectively. Assume that u is the generalized solution of the FBVP constructed by Perron’s supersolutions or subsolutions method (see [1, 6]). It is well known that, in general, the generalized solution does not satisfy (1.3). We say that a point (x0, t0) ∈ ∂Ωδ is regular if, for any bounded function f : ∂Ω→R, the generalized solution of the FBVP constructed by Perron’s method satisfies (1.3) at the point (x0, t0). If (1.3) is violated for some f , then (x0, t0) is called irregular point.
منابع مشابه
Interacting particles, the stochastic Fisher-Kolmogorov-Petrovsky-Piscounov equation, and duality
7 reaction-diffusion system at appropriate values of the rate coefficients and particles’ diffusion constant. This relationship is called “duality” by the probabilists; it is not via some hydrodynamic description of the interacting particle system. In this paper we present a complete derivation of the duality relationship and use it to deduce some properties of solutions to the stochastic Fishe...
متن کاملBoundary temperature reconstruction in an inverse heat conduction problem using boundary integral equation method
In this paper, we consider an inverse boundary value problem for two-dimensional heat equation in an annular domain. This problem consists of determining the temperature on the interior boundary curve from the Cauchy data (boundary temperature and heat flux) on the exterior boundary curve. To this end, the boundary integral equation method is used. Since the resulting system of linea...
متن کاملExistence of KPP fronts in spatially-temporally periodic advection and variational principle for propagation speeds
We prove the existence of Kolmogorov-Petrovsky-Piskunov (KPP) type traveling fronts in space-time periodic and mean zero incompressible advection, and establish a variational (minimization) formula for the minimal speeds. We approach the existence by considering limit of a sequence of front solutions to a regularized traveling front equation where the nonlinearity is combustion type with igniti...
متن کاملInfluence of Rigidity, Irregularity and Initial Stress on Shear Waves Propagation in Multilayered Media
The propagation of shear waves in an anisotropic fluid saturated porous layer over a prestressed semi-infinite homogeneous elastic half-space lying under an elastic homogeneous layer with irregularity present at the interface with rigid boundary has been studied. The rectangular irregularity has been taken in the half-space. The dispersion equation for shear waves is derived by using the pertur...
متن کاملSpectral Quasi-linearization for MHD Nanofluid Stagnation Boundary Layer Flow due to a Stretching/Shrinking Surface
This article concentrates on the effect of MHD heat mass transfer on the stagnation point nanofluid flow over a stretching or shrinking sheet with homogeneous-heterogeneous reactions. The flow analysis is disclosed in the neighborhood of stagnation point. Features of heat transport are characterized with Newtonian heating. The homogeneous-heterogeneous chemical reaction between the fluid and di...
متن کامل